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ABSTRACT

The research summarized concerns several aspects of the propagation and scattering

of acoustical and optical waves and waves on a hydrodynamic shear layer. The topics

discussed fall under the following five categories:

A. Project to extend GTD (ray methods) to guided waves on smooth elastic

objects in water as tested by synthesis of the forward and backward scattering

amplitudes of a spherical shell and the total scattering cross section; thickness

resonance and curvature correction to the specular contribution to

backscattering from a shell; and a numerical test of the product expansion of

the S function for scattering.

B. Acoustical and optical caustics and associated wavefields: opening rate in the

transverse cusp in light scattered from oblate water drops; scaling laws and

wavefront shape for light backscattered from oblate drops; observations of

acoustical and optical transverse cusps produced by reflection; and

miscellaneous applications.

C. Physical optics of bubbles in water: an asymptotic series for critical angle

scattering useful for determining bubble sizes.

D. Acoustic phase conjugation and aspects of wavefront reversal: the present

status of experiments on three-wave mixing in a layer of microbubbles in

water, and preliminary aspects of an experiment with phase conjugation of

ripples on layer of water.

E. Response of the wake of a circular cylinder to forced torsional oscillations:

waves on shear layers and effects on primary and secondary vortices.
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1. SCATTERING OF SOUND FROM ELASTIC OBJECTS IN WATER

A. Project to Extend GTD (Ray Methods) to Guided Waves on Smooth

Elastic Objects

The extension of the geometrical theory of diffraction (GTD) to backscattering from

elastic objects in water should allow complicated scattering problems to be partitioned into

geometry and the determination of local guided-wave/acoustic-field interactions from

continuum mechanics. It gives a simple and quantitative understanding of the scattering

process which could be useful both for inverse problems and for prediction of how

changes in an object will affect the scattering. Heuristic support for the basic ideas were

put forth by Soviet researchers I and in a rigorous way (for the special case of a solid elastic

sphere) by Williams and Marston. 2,3 In previous Annual Reports4,5 the development and

initial testing6 are summarized for a simple approximation of the relevant complex coupling

coefficient G1 for the Ith class of surface elastic wave (SEW) for the case of spheres and

circular cylinders. Relevant measurements of backscattering of short tone bursts from one

empty spherical shell which support the approximations were published.7 The majority of

the new research (summarized below) concerns computational tests of this method of

approximating scattering amplitudes based on comparison with exact calculations for

hollow elastic shells. For a more detailed summary of the method (and some of the

relevant equations) see the INTRODUCTION to the manuscript8 reproduced here in

Appendix A.

The present ray method for a quantitative description of SEW by Marston has a

limitation relevant to the scattering from thin shells. The method as formulated assumes that

the phase velocity c, (along the outer surface) of the Lamb waves of interest exceeds the

phase velocity in water c. This need not be the case for a flexural wave on a thin shell at

sufficiently low frequencies. This limitation is not fundamental to calculations of

amplitudes with a ray representation according to a recent formulation by Felsen et al.9
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While the formulation by Felsen et al. is more general than that by Marston, 8 with the

support of the present contract there has been several numerical verifications of Marston's

formulation based on comparisons with exact computations. Recent and novel examples

are discussed here. Other relevant formulations include ray treatments of propagation on

thin-walled elastic shells 10 ,11 and Marston's simple approximation 12 of the curvature

correction for cl.

There has also been progress in recognizing what physical processes may be

relevant to the resolution of unresolved issues in ray formulations. New experiments on

scattering from elastic objects were not carried out due to plans to substantially improve

the experimental facility and because of other uses of the existing facility for contract

research on this contract.

In addition to the research on scattering from elastic objects summarized below,

Marston has made novel corrections and applications during the formulation of a review

chapter for Physical Acoustics (Academic Press). See Sec. II E.

B. Synthesis of Forward Scattering Amplitudes from a Spherical Shell

and the Total Scattering Cross Section

Kargl and Marston 13 have verified that the ray formulation is applicable to forward

scattering and the total cross section by comparison with exact computations for a shell of

radius a. Figure 1 shows the ray diagram and the mechanisms are summarized in the

captions. The total acoustic pressure Pt, form function f(O), and total (extinction) cross

section Ye are related by

Pt = pi. [eikz + (a/2r)f(0)eik], (at /ita2) = (2/x)Im { f(O = 0)1 (1,2)

where Eq. (2) is a statement of the optical theorem 14 , x = ka, 0 denotes the scattering

angle. The ray picture, Fig. 1, yields the synthesis
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Fig. 1 Acoustic ray diagram for Lamb wave contributions to the forward scattering

amplitude for Lamb waves having c, > c. The outer radius of the shell is a and the inner

radius is b. The incident acoustic plane wave launches a Lamb wave in the vicinity of point

B. The Lamb wave propagates along the shell and radiates in the forward direction at point

B'. The points B and B' are determined by 01 = arcsin (c/c 1 ). The qualitative features of

the ray diagram are made quantitative through an expression for f1 given in Ref. 13. The

GTD also contains a contribution due to diffraction about the shell. That includes

contributions due to rays which touch the shell near E at the edge.
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f(8 = 0) fFD +  fl' I -- Lamb wave type, (3)

where f1 for the elastic wave contributions has a simple ray representation and fFD is the

ordinary forward diffraction contribution. For the purposes of this summary we need only

note that f, is linearly proportional to the coupling coefficient G, and that to evaluate G1,

Marston's approximation is used 6 8

G =- 8np43 c/c/ (4)

Figure 2 compares the resulting synthesis (dashed curve) with the results of exact

calculations passed on the partial wave series (solid curve) for an empty stainless steel

sphere in water. 13 ,15 The ratio of inner to outer radius b/a is 0.838 and the material

properties are as listed in Ref. 7. This synthesis (and the one in Fig. 3) were terminated for

ka <7 since for that region the flexural Lamb wave becomes subsonic. Only the I = a and

s. waves are included in the sum over I in Eq. (13) and the agreement in Fig. 2, while not

perfect confirms the utility of the approximations. The agreement with the exact result is

similar for ka up through 100 when the number of I is increased as the cut off frequency of

each mode is crossed.

This model also gives a simple geometrical picture and approximate expressions by

which the quai-periodic structures in a t may be understood. 13 15 The structure is also

associated with forward glory scattering.

C. Synthesis of Backscattering from a Spherical Shell.

The Relevant approximations in this case are given by Eqs. (1), (10), (11) and (13)

of Appendix A where the physical content is also discussed. The ray representation is as

shown in Fig. I of Appendix A. Figure 4 of Appendix A, which is reproduced in larger

size here as Fig. 3, compares the synthesis of If! (dashed curve) with the exact computation
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(solid curve). The agreement is good for ka > 7 through ka = 100, with additional I

included as each cut off frequency is crossed, except for the region rcug'"y between ka

70 and ka - 80. Two phenomena occur in this frequency region which degrade the

usefulness of the approximation:

(i) Based on root locations of Dv(ka) in the complex v plane, the I = s, cut off is close

to ka = 70 so that wave type contributes for ka ! 70;
14

(ii) there is a thickness resonance of the shell in this region due to the axial

reverberations of bulk longitudinal waves.7 See Sec. D below.

In summary: except in the region where (i) and (ii) are relevant and where c1 < c, the

synthesis gives good agreement with the exact calculation. Hence a simple ray

representation can give a useful quantitative backscattering amplitude for a shell. 16,17

D. Thickness Resonance and Curvature Corrections to the Specular

Contribution to Backscattering from a Shell

Karg117 has made significant progress towards eliminating the errors introduced by

the phenomena (ii) noted above. As is evident from Eqs. (10) and (11) of Appendix A and

the associated discussion, the approximation of the specular contribution fs uses the

complex reflection coefficient Rof a flat plate and neglects the curvature correction fscc.

The correction accounts for the fact that the inner radius b differs from a so that the strength

of reverberations is reduced by additional spreading factors. Figure 4 shows a simplified

ray diagram for the problem of interest for which a bulk longitudinal wave is excited in the

material having a velocity cL > c where c is the phase velocity in the water external to the

shell. The rays arising from the internal reflections spread at a different rate from that of

the specular reflection from the outer surface. For an elastic shell and incident ray

displaced from the axis (as drawn in Fig. 4) there will be some mode conversion to shear

waves at each vertex. Mode coiversion vanishes for rays which are exactly backscattered

since they are normally incident on each interface. The discussion which follows neglects
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such mode conversion and is directly applicable to the idealized case of an empty fluid shell

surrounded by water. It is verified by comparison with exact computation for

backscattering from such an idealized shell for which the shear wave speed cs = 0 since the

shell material is unable to support shear stress for the case of a fluid shell.

For frequencies such that multiple reverberations are reflected backward from a flat

plate such that the successive contributions are in phase with each other, it is conventional

to describe the condition as a 18 "longitudinal resonance". The same condition can be

present for a spherical layer, though it is presently uncertain as to how such a resonance

manifests itself in the analytic properties of the scattering amplitude described in Ref. 6 and

here in Sec. I E. For the usual case where PECL > pc, where pE and p are the densities of

the layer and water, respectively, the lowest resonance condition is that one-half a

wavelength of the longitudinal wave fits across the layer. Hence for a spherical shell of

thickness h = a - b , the lowest resonance is at a frequency Wa/2n = cL/2h corresponding to 7

(ka)L = 1rcL/c(l - b/a). (5)

In Karg's ray analysis, the curvature correction fScc in Eq. (10) of Appendix A [call it

Eq. (A 10)] is significant for ka close to (ka)L. The following form is obtained 17

f5c= (1-r ) [exp(-i2ka)] nBr exp(inL) (6)=sC r I + nB(6

n= I

where a = 2khc/cL and the constant B is a function of b/a and c/cL. The improved

approximation for Ifs1 from Eq. (A 10) was compared with exact If! for backscattering from

empty fluid shells. Figure 5 shows the comparison for the form function for backscattering

from an empty "fluid aluminum" shell in water with b/a = 0.96 and the parameters are cL

6.42 km/s, PE = 2.7 g/cm3 , c = 1.4825 km/s, and p = 1.0 g/cm 3 . The solid curve is the

exact calculation based on the partial-wave series where the velocity of the shear wave in

the sheU material vanishes. The dashed curve is the curvature corrected specular reflection

calculated as described above. If the curvature correction fScc is omitted the approximate
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result from Eq. (A 10) becomes IfsI = 1 which is clear disagreement with the exact curve

which shows a dip near the lowest thickness resonance at (ka)l = 340.1. Clearly fScr is

significant for ka close to (ka)L and it is will approximated by the geometrical model, Eq.

(6).

The implications for the modeling of backscattering from elastic shells (for which

the shear velocity does not vanish) are also being explored.

E. Product Expansion of the S Function for Scattering from Elastic

Spheres Having Multiple Resonances

In related work, the implicit assumptions of formal resonance scattering theory 19

(RST) have been corrected and clarified. The summary below, while including some of the

discussion from the previous Annual Report5, summarizes and displays results of novel

numerical tests which verify for the first time the corrections to resonance scattering

theory. Associated with the scattering phase shift 8n of the nth partial wave for a sphere of

radius a is the function Sn(x) =exp[2i6n] where x = ka. The connection of the S function to

the partial-wave form function fn for backscattering from a sphere is through the relation 19

fn = [(Sn - 1)/2i] gn, gn = 2(-l)n(2n +l)/x, (7,8)

where gn is introduced for convenience. A theorem from classical scattering theory20 was

applied by Marston to obtain the following product expansion which appears to be

important and novel for acoustics

(b)(e) (b) e 2ix1 7J Lnj - x) () (x - x)(Xn,+ x)

where the xnI a XnI- i(rn/2) lie in the fourth quadrant and Lnj > 0. Unlike a sum

expansion (stated in some acoustic RST literature19) Sn remains manifestly unitary even for
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multiple ~ ~ 1= reoane n sic ?1 1 . This Sn may be used to split off the elastic

and background contributions to t1') and 6Ib) respectively, to fn as follows

(b) (r) (b) (b) (e) (e) (b)
fn= fn +ff, fn = (Sn - 1)/2i]g,, fn = [(S - lp)ignSn (0a,b,c)

where S b) and Se) are background and elastic factors to Sn from Eq. (9). In partial

analogy with the single resonance case of RST the following result was derived for the case

of only two resonances (labeled 1 = 1 and 2)
(e) (int) (L)f f + f,2+tfn + fn ,il

where it is assumed that x + Xn>> rni. The fn have a Breit-Wigner form
(b) (12)

- S n gn ra [Xn - x - (i/2)rJ](2

The implicit assumptions of RST are that Sn has the product form, Eq. (9), and not the sum

expansion usually written. 19 Furthermore, the interaction term fint) and the contribution

a) from poles in the left-half of the complex ka plane are neglected when f ) is written as a

sum of Breit-Wigner terms as is usually done in RST.

Marston's analysis yields the following approximations for the interaction and left-

pole contributions in Eq. (11):

fib)- r s (13)
1= 1,2 X IV)I

(L)f(b)r r2 x _ _-(i2_Ifn- = "gn Sn-) (I x+'n ) ('x Laa+ i/2) . (14)

1 = 1.2 x i =, 2 xXn ii-F

To test these results numerically the following normalized scattering amplitudes were
(e) (b) (e)calculated: the exact amplitude f. /gn S n = (Sn - 1)/2i from Eq. (1Oc), and the

corresponding approximate result from Eqs. (11) - (14). To evaluate these, it was

necessary to select the resonance frequency xnj and damping rn parameters so as to

evaluate either Eq. (9c) or Eqs. (12) - (14) in the exact or approximate cases respectively.
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Figure 6 shows a representative comparison for which Xn1 = 9, Xn2 = 13 and FnI = rn2 =

2 where the modulus of the aforementioned quantities are plotted. The solid curve is the

exact result I(S e) - 1)/2il while superposed (and almost indistinguishable from it) is a short

dashed curve giving the aforementioned approximate result. In "standard" RST 19 , the

terms f in) and fiL) are omitted in Eq (11) which yields the intermediate length dashed

curve which fails to describe the null between resonances present in the exact result. Also

shown in Fig. 6 are the normalized magnitudes of the interaction and left-pole terms

considered alone, the long-dashed and alternate dashed terms respectively.

This numerical test, and similar results with other resonance parameters confirm the

analysis leading to Eqs. (12) - (14). They also suggest that the interaction term may be

quite significant between resonances and that the left-pole contribution is important at low

ka.

The tests described above do not directly depend on the nature of the background

contribution. The product expansion over index j in Eq. (9b), manifestly corresponds to

poles (or generalized resonances) for which there is no restoring force but only damping.

(These poles lie on the imaginary axis at x = - iLnj.) The physical significance of such a

pole is illustrated by considering the n = 1 or dipole partial-wave. The Lij pole(s) account

for the translational motion of a movable elastic sphere.

11. ACOUSTICAL AND OPTICAL CAUSTICS AND ASSOCIATED

WAVEFIELDS (DIFFRACTION CATASTROPHES)

A. Project to Explore novel acoustical and Optical Diffraction

Catastrophes or Other Wavefields Near Caustics

In previous research we described examples of acoustical and optical diffraction

catastrophes in certain reflection and scattering problems.4,5 Such catastrophes decorate

the caustics of geometrical optics where the amplitudes of the wavefields tend to be large

when the wavelength is short. Three recent accomplishments are described below.
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B. Opening Rate in the Transverse Cusp in Light Scattered from Oblate

Water Drops

This research is concerned with calculating properties of a far field transverse cusp

caustic Marston previously observed in light scattered from acoustically levitated

horizontally-illuminated oblate drops of water.2 1 23 It follows from the analysis given in

Ref. 23 that a far field cusp caustic has the form

d**(U -UC,) = v2. (15)

where U and V are local horizontal and vertical scattering angles in radians, Ucp specifies

the cusp point location, and d.. is the angular opening rate (in radians-1 ) of the cusp

caustic. As part of his Ph.D. Thesis project, C. Dean calculated d.. for the cusp associated

with the once internally reflected ray from an oblate water drop.24 ,25 The calculation gave

d.. as a function of the drop oblateness q = D/H where D is the drop's horizontal diameter

and H the drop length (or vertical thickness). The analysis is supported by measurements

obtained from photographs of scattering patterns.

The method and results of the analysis are summarized below. The outgoing

wavefront leading to the transverse cusp caustic was previously shown to be of the form23

W (x,y) = -(alx 2 + a2y 2x + a3y2), (16)

where x and y are horizontal and vertical cartesian coordinates. It follows as a special case

of the analysis given in Ref. 23 that d,,. = 4a2/27a 1
2. Hence the problem of determining d..

reduces to the calculation of this function of the wavefront shape parameters a, and a2 for

the wavefront leaving the drop. Dean accomplished this by applying a method of

wavefront tracing in which the principal curvatures of the wavefront are calculated at

successive positions in the drop. (The technique, also known as generalized ray tracing,

was developed for optical instrument design26 but was applied to other aspects of scattering

from drops previously by Marston.4 ,25.2 7) The resulting prediction for d. is shown in
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Fig. 7 for an oblate spheroidal drop of oblateness q and refractive index N = 1.332. The

data and error bars were obtained by measuring the opening rate from photographs of the

scattering pattern like those shown in Ref. 21-23. The crosses correspond to cases where

q = D/H was measured from photographs of the drop. For the open diamonds, D/H was

inferred from a measurement of the cusp point location and using the analysis given in Ref.

22. The inset shows the region of experimental data on an enlarged scale. The

measurements support the analysis though the measurement uncertainties (error bars) are

larger than would be otherwise desired in part because of complexities of the photographic

and levitation techniques.

A brief discussion of the qualitative features of the curve in Fig. 7 is merited to

facilitate a discussion of related work in Sec. II C. It was previously shown 22,28 that when

q = (D/I) 4 - 1.311, the scattering pattern ins that of a hyperbolic umbilic focal section in

which the caustics are straight lines. Consequently, it is to be expected that d. diverges as

q approaches (D/M) 4 as shown in Fig. 7. Furthermore, from the analysis of Nye,28 it is to

be expected that as q approaches the lips event at

= L [N/(2N - 2)] - 1.416, (17)

the opening rate d.. vanishes. This corresponds to point L in Fig. 7. Dean's numerical

results28 show that d,. near qL1 scales as

1/2 (8d - B (qLl -q), (18)

where B is a constant. The analysis also shows that d vanishes as q approaches the

transition event22 labeled T in Fig. 7.

C. Lips Caustics in Light Backscattered from Oblate Drops

Catastrophe theory allows the caustics leaving two cusp points to join smoothly.

The resulting bounded caustics have the appearance of a pair of lips as shown in Fig. 8.
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This curve was calculated as summarized below, by a graduate student, Harry Simpson.

As noted in conjunction with Eq. (17) above, Nye predicted 28 that lips caustics occur in the

backscattering from horizontally illuminated sufficiently oblate drops. The "lips" should

close and disappear as the aspect ratio q = D/H reaches qLl of Eq. (17). In previous

previous research, Simpson obtained photographic evidence of this prediction. 5,2 72 9

In research during the past year, Simpson has improved the acoustic levitator and

has obtained higher quality photographs of lips caustics than those previously

obtained. 5,27 ,29 Simpson has also made significant progress on the theory of lips caustic

and the lips event, the quantitative results of which are summarized below. For q

somewhat smaller than qL1, a lips caustic as shown in Fig. 8 should be produced. The

associated outgoing wavefront leaving the drop was argued from symmetry to have the

local shape

W = -(aIx 2 + a2y2x2 + a.3y2 + a4y4), (19)

where x and y are horizontal and vertical cartesian coordinates with x = y = 0 along the

backward axis. Figure 8 is the farfield caustic from the W in Eq. (19) calculated for an

appropriate choice of wavefront shape parameters aj. As q approaches qL1, a3 must

vanish. Using results Ref. 22 for the cusp point location at the edge of the lips and the

form of Eq. (19) the following new scaling laws were derived which are applicable for q

close to qLl:

1r2 312
UCP = A (qL1 - q)l, Vo = C(qL - q) , (20a,b)

where A and C are constants. Here Ucp is the cusp point angle relative to the backward

axis and Vo is the angle relative to the backward axis to the top of the lips (i.e. where the

smooth caustic crosses the V axis at U = 0). There are marked in Fig. 8. Inspection of

Eqs. (18) and (20) shows that d.., Ucp, and Vo all vanish as q approaches qLI but with

different exponents. The practical consequence for the observations is that Vo becomes
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small for q not extremely close to qL! so that it is not difficult to observe the top and bottom

of the lips. For the same deviation from qL1, UP is relatively large such that the cusp point

at the corners of the lips are not easily observed.

It is anticipated that Simpson will complete a manuscript on this research during the

next year since he is now carrying out other acoustics researchY30

D. Observations of Acoustical and Optical Transverse Cusps Produced by

Reflection

In the previous Annual Report, 5 experiments are described in which a long tone

burst of ultrasound, was reflected from a curved polished metal surface in water. The

surface was curved in the generic shape to produce transverse cusp caustic and preliminary

plots of the wavefield were obtained by scanning a hydrophone and using the output to

modulate the intensity of an oscilloscope. The reflected wavefront has the form of Eq.

(16). While those experiments were sufficient to confirm that the wavefield had the

anticipated shape of a Pearcey pattern, to facilitate a more quantitative comparison with

theory, Carl Frederickson improved the apparatus during the past year including the use of

a (Mac. i) graphics display so that theory contours could be superposed on data. A

summary manuscript, 31 reproduced here as Appendix B, illustrates the current method and

results. It has become only recently apparent that the particular choice of surface

parameters used for that experiment was a poor choice for testing the theory. Small errors

in surface parameters lead to large errors in wavefield parameters for the surface studied.

Consequently, Frederickson has fabricated a new surface for which the wavefield

parameters are less dependent on the directly measured surface parameters and improved

experiments are under way.

Once a quantitative study of acoustical transverse cusps is successfully completed,

it is presently thought that the final aspect of Frederickson's Ph.D. project should be a

study of acoustical "lips" or "beak-to-beak" events in acoustical reflections from reported
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surfaces.

E. Investigations of Caustics and Associated Wavefields Germane to a

Review Chapter

Marston has been preparing a review chapter on "Geometrical and Catastrophe

Optics Methods in Scattering" for the series Physical Acoustics: Principles and Methods

published by Academic Press and Edited by R. N. Ihurston and A. D. Pierce. It has been

appartnt that there are several applications in acoustics for which geometrical methods are

either undezutilized or for which the derivations in the literature are sketchy at best. In

certain cases Marston has carried out new derivations or has examined new applications.

Some of the topics included in the chapter in preparation are:

1. A complete re-derivation of the wavefield near the longitudinal (or axial) cusp

caustic of a cylindrical wavefront converging to an aberrated focus. The original

result by Pearcey 32 (stated without derivation) is correct but the new derivation

clarifies the assumptions in Pearcey's result.

2. An apparently novel plot was introduced for displaying the breakdown of Keller's

GTD approximation for diffraction by an edge near the shadow boundary. It was

subsequently discovered that a similar plot had been only recently introduced in

optics.33

3. A simple approximation of scattering from a finite tilted circular cylinder was

derived from physical optics methods.

4. The construction of two-dimensional wavefronts as involutes of a caustic was

reexamined. An application is to the wavefront scattered from a circular cylinder as

imaged at the Navy Research Lab by Neubaurer.34 The prediction is that such

wavefront ame the involutes of a caustic circle. It appears that this prediction was

not previously known. 35



25

IlL OPTICS OF BUBBLES IN WATER

A. Physical Optics of Bubbles in Water

Previous Annual Reports4 ,5 have surveyed research into the physical optic of

bubbles in water. Contrary to what may have been anticipated there can be significant

erors if purely geometrical methods (adapted to retain phase information) are used to

calculate the scattered irradiances. This is because even though bubbles are very much

larger than the wavelength of light in water Xw , the effects of diffraction are significant near

caustics and near the critical angle. Physical optics methods are an improvement over

purely geometrical methods. In addition to the research summarized below, the following

accomplishment is noteworthy: Marston prepared a brief overview of scattering properties

for bubbles intended for a general audience. 36

B. Asymptotic Series for Scattering at the Critical Angle from CAM

theory

Some of the motivation for deriving an asymptotic series for scattering at the critical

angle was described in the previous Annual Report 5 Only a brief summary will be given

here since the derivation and testing of the series was recently completed by Cleon Dean as

part of his Ph.D. Thesis. 24

The critical scattering angle at 0 c = 82.8 from an air bubble in water locates the

transition from partial to total reflection in elementary geometrical optics. The irradiance

scattered into a narrow angular region near the critical scattering is a monotonically

increasing function of bubble radius a provided a >> Xw where Xw is the wavelength of

light in water. The asymptotic series for critical angle scattering derived by Dean leads to a

simple approximation for the irradiance. It also describes the breakdown of elementary

geometrical optics for reflection at the critical angle from a curved interface. The method of

derivation extends the complex angular momentum (CAM) theory of Ferrari and
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Nussenzveig. 37 ,38 CAM theory is a modified Watson transformation of the exact Mie

series for scattering from a bubble. Dean found that the leading correction to the scattering

amplitude relative to that of a perfect reflection is found to be 0(0-1/4) where P = 2inaaw is

the size parameter. The series was confirmed by comparison (as a function of 6) with

smoothed Mie computations. The leading correction is significant for P as large as 20,000,

and it is larger when the light is polarized with the E field parallel to the scattering plane

than perpendicular to it. Applications to optical bubble sizing have been noted, and the

nature of approximations in previous physical optics models of critical angle scattering

were clarified.24

In the previous work by Ferrari and Nussenzveig, 37 ,38 the CAM theory lead to

integrals which Ferrari evaluated numerically. With a moderate effort, Dean was able to

derive an asymptotic series for each of the integrals and hence, a series for the scattering

amplitude. This work was only partially supported by this contract.39 The contribution of

the reflected light to the normalized irradiance becomes

M2 Aj0, 3 A 5 A 4 4 + i B j-q P'V1 2, (21)

q=O q=0

where Ajo = Bjo = 1/2 and the coefficients Ajq and Bjq are complex for q 1 1 and j is a

polarization index. Note that P-o4 = I for q = 0. Because the analysis leading to Ajq and

Bjq is tedious, it was necessary to terminate the series at MA = MB = 2. (The coefficient of

Aj,, was incorrecy thought to be P-fr as the time of the previous Annual Report 6 An

error was identified shortly after that report was written and we are confident of the present

result because of numerical tests described below.) Some of the noteworthy features

evident from inspection of Eq. (21) are (i) Ij(Oc,p -+ -o) -+ 1 which is the correct

geometric optics limit for total reflection and (ii) the leading correction to the geometric

optics limit is O(5"1/4). This is of fundamental interest since away from special angles, the

corrections to geometrical optics are usually O(P'1).
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Figure 9 (a) and (b) show comparisons of Eq. (21) with results from smoothed

(exact) Mie theory for a bubble in water where in (a) and (b) the polarization index j is 1

and 2, respectively; these correspond to the scattering of polarized light with the E field

perpendicular to and parallel to the scattering plane, respectively. The solid curve in each

figure is from Mie theory. The dashed curve is with M A = M B = 1 in Eq. (21) and the dot-

dashed curve is almost indistinguishable from the exact curve. The most difficult part of

the analysis was in deriving the correct expressions for Aj,2 and Bj,2, smooth functions of

the refractive index. The comparisons shown confirms Dean's analysis.

The normalized irradiance Ij is related to the physical irradiance ij (in W/m2) by ij =

ii(a 2/4R 2) Ij where R is the distance form the bubble of radius a and iinc is the incident j

polarized irradiance. The approximations obtained expiain why an angular average of ij for

a scattering angle 0 O c is monotone in a. They provide the theoretical basis for the

technique used by Holt 40 to optically detect bubble pulsations.

IV. ACOUSTICAL PHASE CONJUGATION AND ASPECTS OF

ACOUSTIC AND WATER WAVE WAVEFRONT REVERSAL

A. Overview of the Project

The project is to investigate physical mechanisms to cause propagating acoustical

wavefronts to reverse their direction so as to retrace their path. Such is the case if a "phase

conjugate" wave is produced. For laboratory scale experiments it can be convenient to

produce a wave of a slightly different frequency which, while nearly reversed in

propagation direction, does not exactly retrace the path of the outgoing wave. Various

physical mechanisms for doing this with sound, based on nonlinear processes or time

dependent variation of medium parameters, are discussed in previous Annual Reports.4',5

B. Experiments on Three-Wave Mixing in a Bubble Layer

One of the mechanisms considered for sound is three-wave mixing in a bubble layer
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in water. Soviet researchers have claimed to have observed three-wave mixing by that

mechanism.4 1 Graduate Student Steve KargI has been carrying out similar experiments

with the support of this contract, though with ambiguous results as summarized below and

in the previous Annual Report. 5 During the past year, Kargl carried out experiments both

at WSU and at the Naval Coastal Systems Center (NCSC) in cooperation with Dr. Douglas

G. Todoroff. The results will now be summarized.

At WSU KargI attempted three-wave mixing in a horizontal bubble layer in a new

500 gallon tank with a water depth of about 6 feet. The bubble layer was trapped against a

thin horizontal sheet of Mylar. One significant complication was that the properties of the

layer appeared to evolve significantly (due in part to coalescence) during the tim a

hydrophone was scanned along a line. (This complication makes in no layer meaningful to

locate a focus in the reversed wave from an apparent maximum of the wavefield

amplitude.) To better understand this problem, Steve examined methods for acousticaly

characterizing the layer. He is also putting faster interfaces in the digital signal processor

(DSP) and affiliated computer so as to speed up data acquisition. (This has been

complicated by power supply failures of the DSP which the manufacture has only recently

been willing to address following a letter to the Chairman of the Board.) Finally after a

delay (from another vendor) Kargl has procured a needed hydrophone for that experiment.

During parts of June and July of 1989, KargI was attempting similar experiments at

NCSC in a 15 ft. x 15 ft. x 8 ft deep tank.4 2a The experiments were grouped as follows:

1. The first set were simila to experiments tried at WSU where the bubbles layer was

trapped against a thin horizontal sheet of Mylar. In addition to the large size of the

tank, another advantage of this facility is the ease by which attenuation

measurements could be obtained for transmission through the layer. Measumets

showed a maximum attenuation near 50 kHz. Layers were subjected to a strong

400 kHz pump signal and a - 350 kHz probe and a reversed wave at th difference
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frequency (at or close to 50 kHz) was searched for. No unambiguous reversed

wave focus was located and signals of the expected magnitude were not observed.

It is note worthy however, that real time signal averaging was not used.

2. The second set of experiments were done with a layer of freely-rising larger

bubbles for which the resonance was in the 20 to 30 kHz range. The pump and

probe signals were lower in frequency, the pump typically being - 100 kHz. The

results were ambiguous as in the first set. The parameters for this set were similar

to those in the Soviet experiments except with stronger pump and probe signals and

a more sensitive hydrophone. Kargl's negative results cast doubt on the

interpretation of the Soviet research.4 1

In spite of the results, the joint effort between the NCSC and WSU projects was

mutually beneficial.

KargI is presently setting up experiments at WSU to resolve an important related

physics issue. If one monitors the difference frequency sound radiated by a single bubble,

how does that radiation build up when the pump and probe signals are in the form of

bursts? Such measurements will be helpful in determining how long the pump and probe

bursts will need to be in three-wave mixing experiments in order to simulate the steady-

state condition assumed in calculations such as those given in Ref. 5 and 41. While

Atchley et al.42b appear to have detected the difference frequency response of a bubble,

they did not report observations of the response to bursts.

The results of our experiments with single bubbles subjected to bursts will affect

the design of subsequent experiments with layers. Kargl's Ph.D. thesis effort is split

between this problem and research on applying ray methods to scattering from elastic

objects as described in Sec. IB-D.

C. Phase Conjugation and Wavefront Reversal of Ripples on a Water
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Tank.

At present, the expressions derived 4- for the focal location of reversed waves are

without clear verification from experiments. Two-dimensional waves represent a special

case of those expressions so that observations for such waves would be germane to

verification. Instead of two-dimensional sound waves, a M.S. degree candidate, J.

Michael Winey is preparing to look for wavefront reversal in a ripple tank. The depth h of

the water in the tank is set to 5 mm such that the dispersive effects of surface tension and

gravity nearly cancel4 3 if the frequency is less than about 10 Hz. Consequently a tone

burst of such waves should spread out only weakly with propagation. A number of

parametric mechanisms are possible for producing a (reversed) difference-frequency wave,

the simplest being the modulation of the height of a slanted boundary.

The status of the experiment is as follows. During the approximately 1 1/2 months

which Winey has worked on the experiment he has built a point source for ripple tone

bursts and has been able to detect the ripples optically. The source is a partially immersed

cone with a narrow apex angle which is moved vertically by a moving-coil loud speaker.

To detect the waves a dye is put in the water and the attenuation of a narrow laser beam

passing vertically through the water is measured. The attenuation varies with depth. The

upper and lower records of Fig. 10 show three-cycle bursts having frequencies of 7 Hz and

12 Hz, respectively. The burst near the center of each trace has propagated directly 16 cm

from the source to the optical receiver. The weaker burst near the end of the trace is a wall

reflecion with atotal propagation distance of about 30 cm. There is also a signal near the

beginning of each trace attributed to a direct electrical coupling. These experiments were

carried out in a 25 cm x 50 cm glass bottomed aquarium.

When Winey, who is presently supported by a teaching assistantship, returns to the

project, plans are for him to build a much larger ripple tank (roughly I m x 2 m) in which

to attempt parametric wavefront reversal experiments. The source and detector techniques

described above will be used together with a localized high frequency of the depth. An
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order-of-magnitude estimate of the reversed wave magnitude indicates the experiment is

worth attempting.

V. RESPONSE OF THE WAKE OF A CIRCULAR CYLINDER

TO FORCED TORSIONAL OSCILLATIONS:

WAVES ON SHEAR LAYERS AND VORTICES

A. Overview of the Project

The shedding of vortices in flow past bluff bodies is a long standing problem

having applications as well as fundamental significance.4'4 45 The understanding and

control of vortex shedding has potential applications for drag reduction, control of

structural vibrations, and noise control. With the partial support of the contract, 6 a Ph.D.

candidate; J. R. Filler, has been studying experimentally a novel method for affecting

vortex shedding and waves on shear layers which separate from a cylinder. The response

to small amplitude torsional oscillations of the cylinder is measured as will be discussed

subsequently and has been studied with flow visualization. At the tine these experiments

were initiated in 1988, we were unaware of any prior study of the response to torsional

oscillations, though several groups had studied effects of transverse oscillations (e.g., Ref.

45). Following our initial observations we became aware of current4 7 and previous"8

observations of effects of torsional oscillations. Our work, however, measures properties

and flow regimes not previously studied. It makes use of real time signal processing

techniques similar to ones used in basic acoustics research.

B. Forcing of Waves on Shear Layers and Primary and Secondary Vortices

Figure 11 is a diagram of the apparatus. The cylinder is immersed in a 69 ft long

open channel water flume. In the absence of the cylinder the flow is unifdrm with a

velocity U0 which is typically 5 cm/s - 2 in/s. The Reynolds number, which should

characterize the flow if it were purely two-dimensional, is defined as Re = Uod/v where d
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is the cylinder diameter and v is the kinematic viscosity of water. For the experiments

summarized below Re was in the range 250 to 1200 and d was typically 1.27 cm. It is

well known that in this range, the flow along the surface of a stationary cylinder separates

from each side to produce a pair of free shear layers. (A shear layer is characterized by a

rapid change in the tangential velocity, in this case over a distance of a few mm.) An

interaction of the shear layers contributes to the formation of the von Karman vortex street

down stream from the cylinder. The frequency of the naturally occurring vortex pairs is fs

where fS = Uo S/d and S is the nondimensional Strouhal number which typically has a

value - 0.2. The typical magnitude of fs was 1 Hz.

In the experiments the cylinder was driven by a stepper motor such that the angular

velocity was approximately a square wave function of time. Relative to the laboratory

frame, the tangential velocity of the surface of the cylinder had a fundamental component

UT cos(2xft). The oscillation amplitude was sufficiently small that UT/UO was typically

0.02. A hot film anemometer was placed in the wake downstream a distance typically 0.5

to 1 d past the back end of the cylinder. The anemometer was laterally positioned to lie in

(or close to) the separated shear layer. Small changes in the anemometer voltage Va(t)

were approximately linearly related to small changes in the velocity magnitude U at the

anemometer. To facilitate the discussion which follows it is convenient to decompose

Va(t) as

Va(t) = Vo + V1 cos(27tft + ) + Vr(t), (22)

where Vr is a zero-mean residue having only insignificant spectral components at the

driven frequency f. The values for V1 and, were measured with a phase sensitive

detector ("lock-in amplifier") having a long integration time (typically - 100 sec.). For a

fixed f, the measured value of V1 increases with the oscillation amplitude UT until the
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response saturates: VI is related to the velocity fluctuations in the wake driven by the

cylinders torsional oscillations. The velocity change may, however, be only roughly linear

in V1 . With UT fixed, f was stepped through a range of values and Vi(f) and O(f)

were measured.

Figure 11 shows a representative response curve for V1 as a function of the

dimensionless forcing frequency f' = fd/U0 . It is for Re = 920. The peak near f' = 0.2

is such that f is close to the natural shedding frequency fS. It appears to be associated

with the forcing of the shedding Strouhal vortices. For Re > 500, a broader peak is

observed at a somewhat higher f'; in Fig. 11 this peak is centered near f' - 0.8. This peak

appears to be associated with waves which are convected along the free shear layer at a

phase velocity of roughly the mean velocity U of the shear layer. Experimental evidence

for the latter include measurements of (f) showing that d0/df is roughly constant in this

region having a value roughly consistent with the estimated U and the propagation

distance along the (curved) shear layer from the separation point of the cylinder. Other

evidence includes flow visualization experiments mentioned below.

The existence of the broad high-frequency peak in Fig. 12 may have been

anticipated from a calculation by Monkewitz and Heurre 49,50 which partially motivated this

measurement. They calculated the response of a free initially flat shear layer to a velocity

perturbation of frequency fp. They found that the perturbation can be amplified with

propagation along the layer and that there is a most amplified frequency fpm such that fpm

0.032 U/0 where 0 is the local momentum thickness of the layer. Furthermore, for

sufficiently large fp, the perturbation is attenuated with propagation. Filler's estimates51 of

fpm for the shear layers which separate from the cylinder place fpm in the general region of

the broad maximum in Fig. 12. Consequently there is theoretical reasons for interpreting

that peak as the most amplified frequency of the shear layer. It is also known that the most-

amplified perturbation can roll-up the shear layer to produce vortices. Such vortices which
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grow in separated shear layers of cylinders are sometimes known as secondary vortices 52

and there is some evidence that they can affect the downstream formation of Strouhal (or

primary) vortices. Filler visualized the shear layer response by injecting dye and found that

high frequency torsional oscillations of the cylinder can enhance what appears to be the

production of shear layer vortices.

The experiments shed light on several other local flow phenomena; for example,

there is a jump in the phase as f is scanned through the Strouhal peak. Filler is at the

time of this writing preparing a Ph.D. thesis which describes and analyzes his experiments.

There may be implications for active control of flow past cylinders.
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APPENDIX A

RAYLEIGH, LAMB, AND WHISPERING GALLERY WAVE CONTRIBUTIONS
TO BACKSCATTERING FROM SMOOTH ELASTIC OBJECTS IN WATER
DESCRIBED BY A GENERALIZATION OF GTD

Philip L. MARSTON,* Steven G. KARGL,* and Kevin L. WILLIAMSt

*Department of Physics TApplied Physics Laboratory
Washington State University University of Washington
Pullman, Washington 99164 Seattle, Washington 98195

Surface guided elastic waves on objects in water can significantly contribute to the
scattering of sound. The present research concerns the development and testing of a
quantitative ray representation of such contributions to backscattering from smooth
elastic objects. Resulting resonance structure is compared with that from the exact
partial wave series for solid and hollow spheres. Experimental tests used short tone
bursts so that different contributions were separated in time. The analysis concerns
leaky guided waves having phase velocities exceeding that of water.

1. INTRODUCTION

The usual geometical theory of diffraction (GTD) gives a ray representation of scattering
amplitudes for rigid objects [1] and is generalizable to certain bulk-transmitted-wave contributions
for solid elastic objects [2]. One of the difficulties in extending GTD methods to elastic objects
such as shells in water is that the contributions due to surface guided elastic waves (SEW) can be
important. Examples of SEW include leaky Lamb waves on shells and Rayleigh and whispering
gallery waves on spheres. The extension of GTD to represent backscattering from such objects
should facilitate the partitioning of complicated high-frequency scattering problems into geometry
and the local mechanics of the interaction of the sound field in water with the SEW. Such an
extension should give a simple and quantitative understanding of the scattering process which could
be useful both for inverse problems and for predicting how changes in an object will affect the
scattering. The present paper summarizes the development of such an extension, directs the reader
to detailed literature, and gives novel relevant derivations for amplitudes and phases.

Figure I illustrates a generic problem of interest. A plane wave is incident on a smooth empty shell
having a circular profile. One contribution to backscattering is due to specular reflection from the
region near point C; however, that is not the contribution of primary concern here. The incident
sound wave excites an elastic surface wave at point B which repeatedly circumnavigates the object
radiating sound back towards the source from point B'. A heuristic model of this scattering
process was put forth by Borovikov and Veksler (3]. In their analysis, however, the coefficient
which describes the coupling of SEW with the acoustic field in water was determined by a fitting
procedure. A rigorous analysis of backscattering from solid elastic spheres was carried out by
Williams and Marston [4,5] based on the Watson transformation of the exact partial-wave series.
That analysis gives a virtually exact expression for the required complex coupling coefficient Gt
for the specific case of a solid elastic sphere. (The dependence of G1 on physically relevant
parameters was, however, obscure.) That analysis predicts that the contribution to the form
function for the farfield backscattering amplitude due to the Ith class of SEW is simply

f 1 ,exp(-2xt-0, + iJ I Ps/,) fa expi(kr - ax)]

+jexp(-2irP 1 + '~kcc) Pn 2r(12
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where c and k are the sound velocity and wavenumber in the surrounding water, a is the
sphere's radius, T11 is a propagation phase delay and j = i for a sphere. Parameters which
describe the surface wave are the phase velocity cl and radiation damping parameter 01 (in
npradian). As reviewed in Sec. 3, fl is part of the total form function f which relates the scattered
and incident pressures by Eq. (2). A trace-velocity matching condition gives for cl > c

01 = arcsin(c/c,), 7t = 2k 4c/ct) nt - e1) - cosOjj - (j + 1)ir/4 (3a,b)

Equation (1) predicts a sequence of resonance peaks and is like the form used to describe Fabry-
Perot resonators [5]. Superposition of such contributions for Rayleigh and whispering gallery
waves with a specular reflection term synthesize accurately the backscattering computed directly
from the partial-wave series for a solid sphere [5,6]. [It may be shown [6] that Eqs. (1) and (3)
apply also to right circular cylinders by taking j =- I though the exact expression for the coefficient
GI was not obtained.] Measurements of backscattering of short tone bursts due to Rayleigh waves
on a solid sphere, reviewed below in Sec. 2, were also described by the theory [4,7].

To facilitate the description of how fl depends on the interaction of the sound wave in water with
the surface wave, it was desirable to express GI in terms of the SEW properties cl and 01. An
analysis [6] yields the following approximations for the sphere and circular cylinder cases,

IG'l - 8no, c/c, 1GY1 ,- Stn3t/(,rka) 1/, .(4,5)

where a is the radius of the cylinder. As discussed in Sec. 4, where the phase of Gt is also
considered, these approximations were derived by comparing the form of Eq. (1) near a weakly
damped resonance peak with standard (approximate) results [8] of resonance scattering theory
(RST). It should be emphasized that Eq. (4) is much simpler than the exact result known for solid
spheres [4] since the dependence on 01 is evident. The connection between (4) and (5) follows
from ray arguments summarized in Ref. 6 and below in Sec. 4. The original confirmation of Eqs.
(4) and (5) was based on numerical comparison with the exact IG for solid spheres [4] and
Veksler's fitted result for symmetric Lamb waves on a hollow cylinder [3]. The simple form of
Eqs. (4) and (5) facilitate quantitative ray tracing for surface wave contributions without use of a
fitting procedure and should simplify the procedure for revising Eq. (1) for other objects. The
important SEW parameters for a given frequency and radius of curvature a were originally
obtained by locating the complex root v of Dv(ka) = 0 associated with the tth SEW where
Dn(ka) is the denominator of the nth partial wave in the exact series [6]. For a leaky Lamb wave
on a shell, ct can sometimes be approximated from flat plate results by introducing curvature
corrections [9).

2. MEASURED BACKSCATTERING OF SHORT TONE BURSTS FROM A SHELL AND
A SOLID SPHERE

This section reviews theoretical results and supporting experiments from Refs. 4, 7, and 10
concerning the backscanering of short tone bursts. The wave incident on the spheres was
approximately a 3 or 4 cycle sine wave burst from a distant source with a frequency a2 as low
as 300 kHz. For the experiments with a solid tungsten carbide sphere [4,71, Fig. I is applicable
with b = 0 and the major SEW contribution was due to a leaky Rayleigh wave designated by I=
R. Figure 2(a) shows the observed sequence of backscattered echoes for such a sphere with a =
1.27 cm and ka = (nm/c a 43.2. The initial response labeled S is due to the specular reflection
from the region near C in Fig. 1. The first echo labeled R is due to a Rayleigh wave which
partially circumnavigates the sphere (from B to B' in Fig. 1) and will be assigned an index m -
0. The subsequent echoes are due to energy radiated by the Rayleigh wave burst as it
circm avigtes the sphere m times, m = 1, 2, .... Echoes with large m ae reduced in amplitude
by radiation damping. The pressure amplitude of a distinct echo due to the Ith class of surface
wave has the prdctW form [7,10]
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FIGURE 2
FIGURE 1 Measured echoes for backscattering from solid

Ray diagram for contributions to backscattering (a) and hollow (b-d) spheres. S denotes the
due to a surface wave (of type 1) excited near B specular echo. It is followed in (b) and (c) by a
on an elastic sphere or cylinder. WF designates tail; here ka is near the thickness resonance and
part of the outgoing wavefront. the onset of the 1 = sI wave.

IPmJ = Ipi A. a/2r, An, = IG ex{-2(ir-01 )3,- 2m31 I. 0(u) - io31yJ 1(u)l, (6,7)

where J0 and JI are Bessel functions evaluated at u = ka c/cr, Ipil is the amplitude of the
incident wave, y is the backscattering angle, and r is the distance from the center of the sphere.
(The normalization in Eq. (6) is such that specular reflection from a large fixed rigid sphere
produces a wave whose amplitude is Ipit a/2r.) For scattering in the exactly backward direction, y
= 0 so that IJ0(u) - ip3t yJ1(u)l = 1. Measured amplitudes with y = 0 agreed with predictions for
m = 0 and I over a range of ka (4]. As y is shifted away from y = 0, Ipw, decreases which is a
manifestation of glory scattering (7]. The reduced amplitude was nearly proportional to IJo(u)l
since O1R yJ(u)l << 1.

Backscanering was measured from an empty stainless steel spherical shell [101. The shell
dimensions were: radius a = 19.05 ran; Lhickness h = a - b = 3.1 mm; and b/a = 0.838. Figure
2(b), (c), and (d) are representative records for the hydrophone placed on the backward axis for ka
of 64.7, 68.8, and 36.4, respectively. For these ka, the SEW contributions are primarily the
lowest antisymrmetric (or flexural) and symmetric leaky Lamb waves for which case I becomes ao
and so, respectively. The identification of the m = 0 contributions in Fig. 2 is in accordance with
their arrival time relative to the specular echo S. The times were in good agreement with.delays
based on group velocities cgi and modeled path lengths. From echo amplitudes, Aol of Eq. (6)
was measured and compared with the predictions of Eqs. (4) and (7). This was done with y = 0
for several ka from 24 to 75 except where ao and so echoes overlapped or were weak. The
agreement with theory was good for a laboratory scale experiment of this type. Detailed off-axis
measuremernof Ao1 with I = ao were obtained for ka - 24.3 where the on-axis echo was
strong (Aot = 1.1). These measurements were in excellent agreement with Eqs. (4) and (7) and
clearly display a minimum near the y of the first zero of JO(ka '/c,). Note that Eq. (7) neglects
the reduction in echo amplitude due to dispersion. For the conditions of the experiments the
reduction was estimated to be negligible [101.

3. SIMPLE APPROXIMATE SYNTHESIS OF BACKSCATTERING FORM FUNCTIONS

The synthesis of the form function for spheres previously confirmed for tungsten carbide [5] was
greatly simplified and applied to solid and hollow spheres. In Eq. (1), the approximation G1
8Xj0 c/cl was used from Eq. (3) and an approximation (see Sec. 4) yielding arg (GI)- 0. The
specular contributions to backscattering may be approximated as [3,41
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(shell) (1.- r2) exp(i2kLh)
= R.exp(-i2ka)+fso ,  R= r-- Irexp(i2kLh)

where PE and CL are the density and bulk longitudinal velocity of the solid, R is the complex
reflection coefficient of a vacuum-backed flat plate of thickness h, kL = W/cL, and fScc is a
curvature correction. The expression for R may be derived by summation of the ray geometric
series for reverberations in a plate [3]. As was done in Ref. 3 for cylinders, the curvature correction
will be omitted in the synthesis which follows so that for the shell IfsN - I R = 1. The ray
approximations to the total form functions for the solid and shell spheres are

f = fs+f I.R+ft=WG1, f= fs+ i +an+ ft=Sn, (12,13)
n=O n=O

where WGI designates the slowest whispering gallery wave and the number Na and Ns of
antisymmetric and symmetric Lamb wave contributions depends on ka through the existence of
roots of Dv(ka) = 0. Figure 3 and 4 compare resulting Ifi with exact values from the partal wave
series. The synthesis is verified in each case. The material parameters are as listed in Ref. 5 and 10,
respectively, and for the shell b/a = 0.838. Notice that in addition to parameters in fs, the material
parameters only enter through the cl and P1 and these are given from roots vi of Dv(ka) - 0. The
finest structure in Fig. 3 is due to WG wave resonances and fine structure not synthesized is due to
higher WG modes. In Fig. 4, it is due to the so wave resonances since 01i is less than that for I =
ao in this region and Ns = Na = I. Whether a resonance causes a dip or a peak in It] can be
understood from the relative phases of the contributions [5). The spacing Aka of resonances for a
given class of weakly dispersive SEW is roughly cg/c.

2 -4.0
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kA I ' 3,$O

~If 1 2.0

0.5.

2K 40 60 0 5 t0 IS 20 as
ka ka

FIGURE 3 FIGURE 4
Form function for seady-state backscattering As in Fi. 3 but for a stainless-steel spherical
from a tungsten carbide sphere: exact (solid shell and the synthesis (dashed) from Eq. (13),
curve) and synthesis from Eq. (12), (dashed). includes 1- a0 and so Lamb conrbutios.

The synthesis is trminated in Fig. 4 at ka - 7 since cl < c at lower ka for I -a. Felsen et at.
[11] have developed a ray representation for cylinders which should facilitate the description of
scattering contributions of subsonic or "waves such as flexural waves having ct < c.
Unlike Fig. 1, the coupling with the sound id involves tunneling thrgh an evanescent region.
Some other lmitlations of ouraroximations for the shell are found by extending the comparison in
Fig. 4 to higher ka. The omi is significant near the lowest thickness onane which
occurs at ka - cL a/ch - 77. While the synthesis up through ka - 100 corecdy describes
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additional fine structure due to the a, wave (which occurs when Na becomes 2 for ka > 40), the
ka region near 70 where Ns becomes 2 is not well approximated by Eq. (13). At the cutoff of the
I = si mode, cl/c -. a such that from Eq. (3a), 01 -+ Q the SEW radiates nearly backwards directly
(along ray B"A" with B and B" shifted closer to C than in Fig. 1) without having navigated the
far side of the sphere. Such radiation is not included in the ray representation [5,6] leading to Eq.
(I). The difficulties in the ka region between 70 and 80 were not present in a ray representation of
the forward scattering. Using the optical theorem, the total scattering cross section is well
approximated from the synthesized forward amplitude [ 12].

4. RAY REPRESENTATION FOR SPHERES FROM ANALYSIS FOR CYLINDERS

The connection between Eq. (1) and rays due to the repeated circumnavigation of SEW may be seen
as follows [5]. For either the sphere or cylinder case, the ray representation of the fj is

f- = f , = "G,exp(i%1 ) exp'2( - 81)A,] Z, (14,15)
m=O

Z = exp(-21tc0) exp[-i(j + 1)/2] exp(i2icka c/c1 ), (16)

where as in Sec. 2, m is the circumnavigation index and the phase factor depending on j = ± I
accounts for the caustics at the poles of a sphere. Summation of Eq. (15) as a geometrical series
yields Eq. (1). While the form in Eq. (1) is useful for describing resonances, Eq. (14) gives a
simpler description of the scattering of short tone bursts. Note that Ifmi I = Aml (y= 0) of Eq. (7).

While the coefficient G1 accounts for the local coupling of the sound field in the fluid with the SEW
in the cylinder case, it also includes the effects of axial focusing [2,131 in the sphere case. For the
cylinder case, Eq. (2) is replaced by Eq. (17) below:

P1__ 2 exp[i(kr - ct)], fQ = 2F2 tpmnVc 1 pnc (17,18)pinc

and Eq. (18), which follows from (17) and consideration of ray tubes, expresses Ifmi I in terms of
the local pressure amplitude 1Pmje of the corresponding outgoing wave in the exit plane (Fig. 1)of
the cylinder from either of two virtual line sources. For cylinders, Eqs. (15) and (18) may be
combined to describe the amplitude of the wave diverging from the virtual line source at F. (The
factor 2 in Eq. (17) accounts for the virtual source, not shown, displaced above C by bj.) The
corresponding relationship between Iffn of a sphere and the local amplitude 'Pm/et in the exit plane
is complicated by axial focusing. Approximation of the relevant diffraction integral [ 13] gives for the
sphere case

21dp,I 11 * 1f, 1  Is exp [ ik (s- b,)/2a1 ds -(8,cka) 1t IJ(t+Ok) (19)ap~pcI.

where bt = ac/C0 is the focal circle radius and it is assumed that ka >> I and bj/a is not << I.
Given Eq. (5) for IGO of a cylinder, the Ifm I for the sphere may be approximated as follows.
Consider a cylinder having the same 01, ct, radius a, and pi., as the sphere of interest.
Consideration of the energy flux along ray tubes on the surface of each scatterer gives IPmte (sphere)l
-IPMe (cylinder)l. Hence Ipmitepin may be eliminated from the right side of (19) by using Eqs.
(18), (15), and (5). The result for the sphere is that IfmtI is as in Eq. (15) with IGO4 given by Eq.
(4). Hence Gi of a sphere in Eq. (4) accounts for the effects of axial focusing on the far field
amplitude as approximated by Eq. (19) when by/a is not << 1.

sp cy
Extension of the ray arguments above gives arg(G, ) - arg(G ) - x/4 when phase information is
retained at all stages. Approximations for arg(GI) for either case may be obtained by retaining
phase information in the comparison of Eq. (1) with a Breit-Wigner form function from RST. (In
the latter, a rigid background is assumed to be appropriate [81.) Because of limitations on RST, the
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comparison may only be valid if 01 << 1. The results are:

arg(G,) - 0, arg(G y) x- /4 (20,21)

in agreement with the relationship noted above. It is evident from Figs. 3 and 4 that Eqs. (4) and
(20) are applicable in the problems considered.

Consider now SEW contributions to the backscattering from a sphere which is only slightly
deformed into the shape of a spheroid. The outgoing wavefront is no longer toroidal, but is
perturbed. Consequently the axial caustic (which led to the y dependence of Eq. (7)) is unfolded to
give an aswoid caustic which has a more complicated directional dependence [14].
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APPENDIX B (For the same Proceedings as Appendix A)

TRANSVERSE CUSP DIFFRACTION CATASTROPHES PRODUCED BY
REFLECTING ULTRASONIC TONE BURSTS FROM CURVED SURFACES

Carl K. Frederickson and Philip L. Marston*

Department of Physics
Washington State University
Pullman, Washington 99164

An experiment is summarized in which transverse cusp caustics and associated
wavefields ae produced by reflecting high-frequency sound and light from smooth
curved metal surfaces in water. Structure in the sound field having the form of a
Pearcey pattern is clearly observed. It is useful for inverse scattering.

1. INTRODUCTION

Caustics may be classified according to the catastrophe designation of a singularity associated with
the merging of rays [1]. The wavefield patterns in regions near caustics are often referred to as
"diffraction catastrophes," and while wave amplitude may be large, it does not diverge at caustics as
predicted from elementary geometrical optics. The caustic having the generic shape of a cubic cusp
curve is associated with the merging of three rays at a cusp point and the disappearance of two rays
as the caustic is crossed. The present paper concerns cusp caustics oriented as shown in Fig. 1.
The direction of propagation of some outgoing wavefront (produced by reflection in the present
study) is nearly parallel to the z axis. The wavefront propagates from the exit plane in water to
produce the caustic. The cusp of interest opens up generally transverse to the z axis such that in
the uv plane (which is parallel to the exit plane) the caustic coordinates are given by Eq. (1),

DT(u -UC)3 = (v- VC)2, DL(z -z)3 = v2  (1,2)

where for comparison, Eq. (2) shows the form of an axial (or longitudinal) caustic in the zv plane.
The coefficients Dr and DL are cusp opening rates and (uc, vc) and (zc, vc .= 0) are cusp point
coordinates in the transverse and axial cases, respectively. The axial caustic is generally associated
with aberration of focused cylindrical wavefronts [21 and near the cusp point the Pearcey function

P(w2, wI) f exii( s4 + w 2 + wis)]ds, (3)

describes the wavefield with w2 and wI proportional to ± (z - zc) and ± v, respectively [3].
Near a transverse cusp, Marston [4] has shown how the relevant two-dimensional diffraction
integral reduces to P(w2, w1) with w2 and wI proportional to ± (u- uc) and ± (v- vc),
respectively. Plots of IP(w2, w 1 ) display a diffraction structure known as a Pearcey pattern.

A previous study in which an ultrasonic wavefield near a cusp caustic was scanned by Dong et al.
[5] failed to resolve a Pearcey pattern. Our experiments are based on the prediction that an outgoing
wavefront displaced from the xy plane in the form [4, 6, 7]

W(x,y) = - (aIx 2 + a2 y2 x + a3y2 + a4x+ asy), a2 * 0, (4)

*Research supported by the U.S. Office of Naval Research.
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near the exit plane and the resulting caustics. * --

FIGURE 2 CURVED " %
(Right) A wave from the point source reflects REFLECTN '
to produce a cusp diffraction catastrophe in the SURFACE
observation plane. The surface has c2 < 0.

propagates to produce a transverse cusp in the plane at z provided al # - (2z)-1. The relation
between the shape parameters ai and the caustic parameters D(Z) and (uc, Vc) is known in the
paraxial approximation [4]. Marston [6] calculated that a reflected wavefront having the shape of
Eq. (4) is produced by reflecting sound from a point source off of a surface whose height is

h(x,y) = cIx2 +c 2y2x + c 3y2 +c 4x + c5y, c2 = -a/2 0, (5)

relative to the xy plane with al = -2cI + (2zs)"1 * -(2z)-1 where (us, vs, zs) denote source point
coordinates as shown in Fig. 2. The relationship between the shape parameters ci, the source
location and the wavenumber 2nrA = 2xf/c with the w and w2 of the Pearcey pattern and the
caustic parameters are calculated in Ref. 6 in the paraxial approximation.

Wavefield data should be useful for inferring the local shape of the reflector which produces the
caustic [6]. In related research, optical diffraction catastrophes in scattering from oblate water
drops were discovered [8]. Relationships between a scatterer's aspect ratio, wavefront shape,
caustic parameters, and diffraction catastrophe patterns have been derived [7, 9-111.

2. SUMMARY OF EXPERIMENTAL METHOD AND RESULTS

A transducer was situated in water which simulated a point source at Zs = 141 cm. The duration T
of the tone burst radiated by the transducer was sufficiently long (- _ 400 Its) that all of the echoes
from the curved surface overlapped in the region of time and space imaged in the reflected field by
raster scanning a small hydrophone receiver in the uv observation plane. The duration r was
sufficiently short that the reflected wave could be sampled distinct from the incident wave. The
hydrophone voltage was amplified and rectified and then gated and sampled at an appropriate time
to simulate a stead-state reflection. The resulting voltage was stored on a Mac II computer along
with the current hydrophone position. This was repeated for a large number of positions in the
scan. An image was produced by increasing the pixel brightness on a display with the aforemen-
tioned voltage for a pixel position corresponding to each hydrophone position. Figure 3 is a repre-
sentative photograph of the display which clearly shows the Pearcey pattern of a transverse cusp
diffraction catastrophe. Dark regions correspond to regions of low reflected pressure amplitude.

One approach to testing the theory would require accurate direct measurements of cI and c2 in
Eq. (5). We chose a different method based on comparison with the optical cusp caustic produced
.by placing an optical point source at the same location as the acoustic source. This was done with
the aid of an optical fiber (driven by a laser) with its output end in the water tank. The receiver was
replaced by a photo detector. The output voltage was stored and imaged as described above.
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FIGURE FIGURE -1
Measured ultrasonic ',, cr:,d patlern ', ith z = MCasured pattern of reflected 'ight. Sulc-,,, c
0," cm Ind f 1.0 'tlHz. The dispia. cd ,pread is a faint cusp curve ha ing DT = .3gcm .v;c
,n u and v are .( and ).M cm. respeti.ei; i*' aIed in the theoretical contours in Fi 3.

Fiure 4 shows the resulting image of the optical caustic wxith the same ret.:a:,in ,urtace, ,oUrc'c
location, and observation plane as in Fig. 3 but xith ; smaller by a factor > 3000. Sapcm'd ,
Fig. 4 is a cusp curve given by Eq. 11 ; in which DT and the cusp point location ruc. ;, cre
empirically fitted. A cusp curve ',ith the same DT is superposed or 3.. ,ince from the thcr,
[61 the acoustical DT is the same. Also shown in Fig. 3 are theoret.: contours of constant
PRw 2 , w1l in which the only remaining free parameter al .4as ar. for agreement be:,ween :he
patterns. From the fitted al and DT. the surface parameters cl ank: .%ere interred and ,kcre
near the range determined by direct measurement for the surface. T"--. 'up is oriented as preJ:,:eJ
Patterns similar to Fig. 3 '.,ere observed for f from 0.5 to 4 MHz where along the .iaci, the
spacing scales as f-l,2. The obsenations not only verify the existence of the truns erie Pcarc',
pattern but support its use in the inverse problem of determining the local ,arfal e ,h,ipe
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